飞行器设计系
王景

王景

职务:助理研究员

办公电话:

电子邮件:wangjinger@sjtu.edu.cn

办公地址:澳门沙金网址2158

 

工作经历

时间 任职单位 职务
2022年-至今 澳门沙金网址2158 助理研究员
2019年-2022年

中国商飞上海飞机设计研究院

博士后

教育背景

时间 毕业院校 学历

2013年-2018年

浙江大学

博士

2009年-2013年 西北工业大学 本科

研究方向

(1)飞行器气动设计;

(2)人工智能与流体力学、空气动力学的交叉研究。

主要科研项目     

(1) 国家自然科学基金区域创新发展联合基金,2024-2027,联合申请人。

(2)上海市扬帆计划, 2021-2024,主持。

(3)工信部课题,2020-2023,主要参与人。

(4)商飞-华为合作项目,2021-至今,主要参与人。

代表性论文专著

(1)Jing Wang, Hairun Xie, Miao Zhang, Hui Xu. Physics-assisted reduced-order modeling for identifying dominant features of transonic buffet[J]. Physics of Fluids, 2023, 35(6): 066124.

(2)Zhiwen Deng, Jing Wang#, Hongsheng Liu, Hairun Xie, BoKai Li, Miao Zhang, Tingmeng Jia, Yi Zhang, Zidong Wang, Bin Dong; Prediction of transonic flow over supercritical airfoils using geometric-encoding and deep-learning strategies. Physics of Fluids, 2023, 35 (7): 075146.

(3)Hairun Xie, Jing Wang*, Miao Zhang. Knowledge-embedded meta-learning model for lift coefficient prediction of airfoils[J]. Expert Systems with Applications, 2023, 233: 121002.

(4)Hairun Xie, Jing Wang*, Miao Zhang. Parametric generative schemes with geometric constraints for encoding and synthesizing airfoils[J]. Engineering Applications of Artificial Intelligence, 2024, 128: 107505.

(5)Jing Wang, Runze Li, Cheng He, Haixin Chen, Ran Cheng, Chen Zhai, and Zhang Miao. An Inverse Design Method for Supercritical Airfoil based on Conditional Generative Models[J]. Chinese Journal of Aeronautics, 2022, 35(3): 62-74.(2022年度航空学报CJA前20篇最具传播力文章,亮点文章)

(6)Jing Wang, Cheng He, Runze Li, Haixin Chen, Chen Zhai, and Miao Zhang. Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework[J]. Physics of Fluids, 2021, 33(8): 086108.

(7)Tuliang Ma, Hairun Xie, Jing Wang*. Pressure distribution prediction of supercritical airfoils at multiple flight conditions using deep learning approach. Journal of Physics: Conference Series.IOP Publishing, 2022, 2292(1): 012012.

(8)Jing Wang, Zheng Yao, Jianjun Chen, et al. Single/Multi-objective Aerodynamic Shape Optimization by Stackelberg/ Adjoint Method[J]. Engineering Optimization, 2020, 52(5): 753-776.

(9)Jing Wang, Fangfang Xie, Yao Zheng, Jifa Zhang, et al. Virtual Stackelberg game coupled with the adjoint method for aerodynamic shape optimization[J]. Engineering Optimization, 2018, 50(10): 1733-1754.

(10)Jing Wang, Fangfang Xie, Yao Zheng, et al. Parameters Assessment for Virtual Stackelberg Game in Aerodynamic Shape Optimization. Modern Physics Letters B, 2018, 32(12n13).

 

荣誉奖励

(1)昇腾AI创新大赛全国总决赛应用赛道金奖,2022年;

(2)昇腾AI创新大赛上海.浙江赛区总决赛金奖,2022年;

(3)2023世界人工智能大会SAIL奖;

(4)中国商飞优秀博士后。

沙金网址www.2158.net|(澳门)Limited Company 版权所有

网站邮箱:SJTUSAA@sjtu.edu.cn

技术支持:维程互联